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Quadric surface projection model for fish-eye cameras
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The curved surface projection model in fisheye image correction algorithm is presented. To analyze the
causes of distortion in existing models, we establish an ideal surface projection model and compare its
surface with the surfaces of existing models. Subsequently, feature points are obtained on the ideal surface
according to the relationship of coordinates of fish-eye image points and their ideal three-dimentional (3D)
points. Finally, the least square method is used to obtain a quadric surface and presents a quadric surface
projection model. The experiment shows that the corrected image of the new model is more similar to the
actual scene than the corrected images of previous models.
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Fish-eye lenses have extremely short focal length and a
very wide field of view (FOV), which is generally close
to 180◦ or even wider[1]. One single fish-eye image can
represent a large part of the surroundings. Thus, use
of fish-eye lens in detection and survey systems has at-
tracted considerable attention. Wu et al.[2,3] have used
fish-eye lens in automatic surveillance.

In order to obtain a large FOV, a fish-eye lens uses the
“non-similar” imaging thought. As a result, consider-
able barrel distortion in fish-eye images occurs. In recent
years, fish-eye algorithm has been extensively studied.
However, fish-eye lens optical transformation is complex
and different fish-eye lens have different designs. Hughes
et al.[4,5] have evaluated several fish-eye algorithms and
found that one algorithm could not fit all types of fish-
eyes lenses. However, previous work did not address
fish-eye lenses with FOV beyond 180◦. In this letter,
a circular fish-eye lens with a FOV of 186◦ is used. We
adopt the surface projection model to derive the coor-
dinate transformation between the fish-eye image points
and their matching scene three-dimensional (3D) points
by orthogonal projection. Spherical projection model is
used in most applications[6−9]. However, for orthogonal
projection, the spherical projection model inherently lim-
its the FOV of the camera to 180◦. When the spherical
projection model is used to correct the 186◦ fish-eye lens,
the corrected image is marked with barrel distortion. The
parabolic projection model proposed by Wang et al. does
not have limitations of the spherical projection[10]. How-
ever, several pincushion distortions exist in the corrected
image of the parabolic projection.

According to the imaging theory of fish-eye lens, the
surface projection model can simulate the optical trans-
formation process. The corresponding relationship be-
tween the target points and the fish-eye image points
can be determined by the model, and the fish-eye images
can be corrected and transformed to normal plane per-
spective images.

The rules of fish-eye surface projection model are
shown in Fig. 1. Suppose that the camera is at the
origin of coordinate O, shooting along the Z axis direc-

tion. The image taken by fish-eye lens is at the OXY
plane and fills a circular area. O is the center of the
fish-eye image outline and R is the radius. P1 and P2 are
the two points on the spatial line. Ps1 and Ps2 are the
two crossing points of OP1 ray and OP2 ray in relation
to the surface. Drawing lines perpendicular to the OXY
plane through the two points, we can obtain points Pt1

and Pt2. Pt1 and Pt2 are the corresponding points in the
fish-eye imaging planes of P1 and P2 after the transfor-
mation of fish-eye lens. Straight lines are transformed to
curved lines by the fish-eye lens. The space coordinates
of P1 are (X, Y, Z), the coordinates of Pt1 on the imag-
ing plane are (u, v), and the centers of the fish-eye image
outline O are (u0, v0). Consequently, the corresponding
relationship between the target points and the fish-eye
image points can be expressed as

(u− v0, v − v0) = D(X, Y, Z) , (1)

where D(X, Y, Z) represents the correction formula.
Previous studies have used the spherical projection

model to correct fish-eye images[3−6]. The projection
surface equation is expressed as

Fig. 1. Rules of fish-eye surface projection model.
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x2 + y2 + z2 = R2 . (2)

The correction formula D(X, Y, Z) is

(u− u0) =
R√

X2 + Y 2 + Z2
X

(v − v0) =
R√

X2 + Y 2 + Z2
Y

. (3)

Sphere can be seen as the rotation surface around the
Z axis, and thus the generatrix of the surface is

x2 + z2 = R2 . (4)

Earlier studies have used the parabolic projection
model to correct fish-eye image[6]. The projection surface
equation is expressed as

z =
R2 − (x2 + y2)

2R
. (5)

The correction formula D(X, Y, Z) is

(u− u0) = R

√
Z2 + X2 + Y 2 − Z

X2 + Y 2
X

(v − v0) = R

√
Z2 + X2 + Y 2 − Z

X2 + Y 2
Y

. (6)

The generatrix of the parabolic surface is

z =
R2 − x2

2R
. (7)

The aim of fish-eye image correction is to restore the
realistic situations; the straight lines in the captured real
scene must also be straight in the corrected image. Each
point on the fish-eye image has an ideal corresponding
point on the calibration target plane and their relation-
ship can be identified by establishing the ideal projection
surface model.

The ideal surface projection model is shown in Fig.
2. Suppose that the calibration target plane parallel is
the imaging plane with a distance of R, the center of
the target plane O′ is at (0, 0, R), and P is the ideal
corresponding point of I in the calibration target plane;
an ideal projection surface exists between the calibration
target plane and the imaging plane, which has a crossing
point Ps with ray OP . Ps represents the feature points
on the ideal projection surface. For every point of the
fish-eye image, there is a corresponding Ps on the pro-
jection surface. The surface composition of these points
is the ideal fish-eye projection surface.

If the coordinates of P are (X, Y, Z), the coordinates of
I in the image plane coordinate system are (u, v), and the
fish-eye image center is O(u0, v0), then the coordinates
of Ps can be obtained by

(
x, y,

√
x2 + y2

√
X2 + Y 2

Z
)

, (8)

where x = u− u0, y = v − v0

When the coordinates of the fish-eye image feature
point P and its ideal corresponding point I are known,

we can derive the feature points of and fit the ideal pro-
jection surface.

The projection surface is a revolving surface, hence,
the difference between the ideal surface and the surfaces
of the existing model can be obtained by extracting the
feature points on the generatrix of the ideal projection
surface. Figure 3 is a fish-eye grid image taken by a
0.33-mm fish-eye lens with a FOV of 186◦. The specific
steps of the feature point extraction on the generatrix are
detailed below.

Firstly, the radius R and the center coordinates (u0, v0)
are determined. The circular fish-eye lens obtains a
profile of its circular effective area; therefore scan line
approximation algorithm can be adopted to derive the
parameters. The brightness difference threshold is set
and the image is scanned from the four sides to the cen-
ter. The brightness of each point in each scan line is
computed to determine the maximum brightness Imax

and minimum brightness Imin. The ultimate difference
of brightness of the scan line Ilim is

Ilim = Imax − Imin . (9)

If Ilim is greater than the threshold, the scan line reaches
the edge of circular effective area. Thus, the center co-
ordinates of the circle and the radius can be decided.

Secondly, the net points Ii(i = 1, 2, · · · , n) intersecting
with the X-axis are selected as the feature points in the
fish-eye image and (xi, 0, 0) are designated as their coor-
dinates, similar to the star points shown in Fig. 3. The
distortion in the center of fish-eye lens is slight, thus the
ideal imaging grid spacing d can use the grid spacing near
the center of the fish-eye image. The actual scene is an
equally spaced grid, and the ideal corresponding points
Pi are marked as (Xi, 0, R), where xi can be expressed

Fig. 2. Ideal projection model surface.

Fig. 3. Grid image taken by fish-eye lens.
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as

Xi = xi + (i− 1)d . (10)

Finally, Eq. (8) is used to obtain the coordinate of the
feature points Psi on the generatrix of the ideal surface.

In Fig. 4, the star points are represented by Psi, the
dashed line is the generatrix of the spherical model, and
the dash dotted line is the generatrix of the parabolic
model. The feature points are not close to the spheri-
cal or parabolic curve but distributed between the two
curves. Using the different models, the same point on
the target plane obtains two different points. As the dis-
tance of one point from the center goes farther than the
ideal point, the other point gets nearer. These results
explain the barrel distortion in the spherical model and
the pincushion distortion in the paraboloid model.

In this letter, we fit the feature points to obtain a
quadric surface as the projection surface and propose the
quadric surface projection model. A rotational quadric
surface around the Z-axis is established, and thus the
general quadric equation can be set as

A(x2 + y2) + B(
√

x2 + y2)z + Cz2

+ D(
√

x2 + y2) + Ez −R2 = 0 , (11)

where A,B, C, D, E are the quadric equation parameters
that need to be fitted.

The surface and the image plane intersect at a circle
whose radius is R and center at the origin. Thus

D = 0,√
−G

A
= R2

. (12)

After the process of simplification, Eq. (11) becomes

(x2 + y2) + B(
√

x2 + y2)z + Cz2 + Ez −R2 = 0 , (13)

where three unknown parameters B, C, and E can be
gotten by the least squares fitting the feature points of
the generatrix. The correction formula D(X, Y, Z) is ex-
pressed as

Fig. 4. Comparison of the feature points and the generatrix
of models.

Fig. 5. Quadric surface fitting results.

Fig. 6. Corrected images using (a) spherical model, (b)
parabolic model, and (c) quadric model.

(u− u0) =

√
EZ2 + 4(X2 + Y 2)R− EZ

2(X2 + Y 2 + BZ
√

X2 + Y 2 + CZ
X

(v − v0) =

√
EZ2 + 4(X2 + Y 2)R− EZ

2(X2 + Y 2 + BZ
√

X2 + Y 2 + CZ
Y

. (14)

Feature point fitting has obtained the unknown pa-
rameters B = 0.0212, C = 0.7676, and D = 151.0598.
The fitting surface becomes close to the feature points
of the ideal surface (Fig. 5).

To verify the effectiveness of the method, we cor-
rect Fig. 4 by spherical, parabolic, and quadric surface
projection models. The sizes of corrected images are
600× 400 pixels and the horizontal view angle is approx-
imately 150◦. When the angle is greater than a certain
level, the spherical model causes barrel distortion (Fig.
6(a)) and the parabolic model produces obvious pin-
cushion distortion (Fig. 6(b)) in the corrected images.
Figure 6(c) shows the corrected image of the quadric
projection model. Grid lines in this corrected image
have become almost straight and no obvious barrel or
pincushion distortion is observed. The comparison of the
calibration results of these models clearly demonstrate
that the quadric model is capable of correcting the barrel
distortion of the fish-eye image.

In conclusion, we conduct a systemic research on the
surface projection model in fish-eye image correction al-
gorithm. In order to correct the fish eye image and make
it more similar to the captured real scene, a quadric
surface projection model by extracting feature points in
the generatrix of the ideal surface is presented and the
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corresponding correction formula is provided. The new
model can be used to correct fish-eye images with very
wide FOV, even those beyond 180◦. The corrected image
produced by the new model is very similar to the actual
scene. However, a small amount of distortion in Fig.
6(c) remained, because the calibration template is not
completely parallel to the image plane. Thus, it produces
several errors when the coordinates of the 3D points of
feature points are being determined. In future work, the
rotation and translation will be considered to eliminate
the effects of the action.
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